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Abstract. Thermally developing, hydrodynamically developed, laminar forced convection
inside rectangular ducts, subject to boundary conditions of third kind, is analytically studied
by using the generalized integral transform technique, allowing for the solution of a
convection-diffusion problem with non-separable eigenvalue problem. Constant fluid
properties, high Peclet number and negligible viscous dissipation assumptions are utilized.
Transforming the energy equation for the unknown temperature profile by the use of the
integral transform technique results a coupled system of first order ordinary differential
equations for the unknown transformed-temperature distribution. That system is then solved
and the temperature profile can be obtained by using the inversion formula. Reference results
were established for quantities of practical interest within thermal entry region, for a wide
range of axial variable, various aspect ratios and Biot numbers. Among that, thermal
quantities are bulk fluid temperature, average wall temperature, average and local Nusselt
numbers and thermal entry length. The accuracy of previously reported results was then
critically examined, for both the developing and fully developed regions.
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1. INTRODUCTION

Heat transfer solutions for laminar forced flow inside ducts of various shapes is of great
interest to the design of compact heat exchangers and several other low Reynolds number
flow heat exchange devices. In Shah & London (1978) there are many references for laminar
forced convection heat transfer in the thermal entry region of rectangular channel submitted to
boundary conditions of first and second kind. A more realistic condition in many applications
would be the boundary conditions of third kind, and the establishment of benchmark results
through a analytical solutions is quite desirable for both reference purposes and validation of
direct numerical schemes. Ozisik & Murray (1974) did an extension to the classical integral
transform technique (CITT), introducing the so-called generalized integral transform
technique (GITT) to solve diffusion problems. For more detailed explanation about the CITT
and GITT we recommend Mikhailov & Ozisik (1984) and Cotta (1993), respectively.



Three-dimensional convection-diffusion problems within irregularly shaped geometries
were solved by Aparecido & Cotta (1990a, 1992). Also, Aparecido & Cotta (1990b) applied
that technique to solve laminar forced convection within rectangular shaped cross-section
tubes for boundary condition of the first kind.The present contribution attempts to give more
results of this problem by extending the ideas in the so-called generalized integral transform
technique applied to laminar flow inside rectangular ducts submitted to boundary condition of
third kind.

An analysis of convergence was done and a set of benchmark results established for
thermal quantities, within a wide range of dimensionless axial coordinate. Previous reported
results from direct numerical approaches are then critically examined.

2. ANALYSIS

We consider laminar flow of a Newtonian fluid inside a rectangular channel of sides 2a
and 2b, with a fully developed velocity profile and subjected to boundary conditions of third
kind. For thermally developing flow the associated energy equation is written in
dimensionless form as
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with inlet and boundary conditions given, respectively, by
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The dimensionless velocity profile is given as an infinite series (Shah & London, 1978)

ULX.Y)= 4" (o) inFk ()G, (X) (4a)

where o =2b/2a= aspect ratio ,a, = k120 (4b,c)
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The exact solution of problem (1) through well-known analytical methods, such as the
classical integral transform technique, is not possible due to the non-separable nature of the
velocity profile and consequently, of the related eigenvalue problem. However, the advanced
ideas on the generalized integral transform technique can be modified to allow for an
analytical treatment of the present problem as now demonstrated (Mikhailov & Ozisik, 1984
and Cotta, 1993). First, the difficulties associated with the eigenvalue problem are alleviated
by choosing the following auxiliary problems (Aparecido, 1997)
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which are readily solved to yield eigenfunctions, normalization constants, and eigenconditions
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Problems represented by Egs. (5) and Egs. (6) above allow the establishment of the
following integral transform pair.

Transform: — 8,,(Z)= [ [ W,(X)0, ()8, Y, Z)dYdX )

m

Inversion: 0(X.,Y,Z2)= 2 oi v, (X)e, (Y)E. (2) (10)



Multiplying Eq. (1) by ¢,(X)¢,(¥Y) employing the inversion formula, Eq. (10), and
integrating over whole domain it becomes

Z Z o +(u, +X,)8,,(2)=0, Z>0,im=12,. (11)
where
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while the transform of inlet conditions becomes
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The double integral in Eq. (12) is done to give
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Equation (11) above provides a denumerable system of coupled ordinary differential
equations with constant coefficients, to be solved for obtaining the transformed potentials. For
sake of obtaining numerical results, the infinite system has to be truncated to a sufficiently
large finite order for the desired convergence. Then, following Aparecido & Cotta (1990), the
truncated system is given by
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with am (0)=g, , and the finite system of N coupled equations is given in matrix form
Py'+Ey =0 with y(0)=g (18)
where P and E are proper representations of the coefticients of Eq. (17), and
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Multiplying Eq. (18) by the inverse of matrix P that system can then be rewritten in
normal form to yield

y'+Fy =0 with y(0)=g and F=P'E. 21)

This finite (N*) system with a constant coefficients matrix, F, was solved by efficient

numerical algorithms for initial value problem, such as in subroutine DIVPAG from the IMSL
package (Visual Numerics, 1994), with high accuracy.

Once the transformed potentials have been obtained, the inversion formula is recalled to
provide the complete temperature profile.

The dimensionless average temperature and average wall temperature are then computed
from their definitions
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where A, is the cross-sectional area and p is the perimeter. Performing the above integrals
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The local Nusselt number can be evaluated by making use of the temperature gradients at
the wall integrated over the perimeter, or utilizing the axial gradient of the average
temperature, providing the following couple of working formulae
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The average Nusselt numbers are then computed from
Nu,,,(2) = % [ Nuy(2)dz . Nu,,,(Z) = % [ Nuy(Z)dz. (32a.b)

From here, where appears Nusselt number Nu(Z) it refers to Nu,(Z).

3. RESULTS AND DISCUSSION

System (21) was solved for N <20 to illustrate the convergence behavior of the present
approach, within a wide range of Z from 10™ to 10°. Figure 1 shows Nu(Z) for

N =5,10,15, 20, for a square duct (0" =1). The Nusselt number computed for N =20 and

N =15 are practically coincident for Z=>10"*, while for N =10, they are coincident for
Z=23x10", and for N =5, they are coincident for Z>2x107. In the other figures and

tables the results have been computed for N =15.

Table 1 presents a comparison of limiting Nusselt numbers from various sources,
compiled in Shah & London (1978), Aparecido & Cotta (1990) and from Javeri (1978). The
results of Miles & Shih for a 40x40 finite difference grid appear to be more accurate than
those by Schmidt. The present solution is in a good agreement with the results. Table 2

presents a comparison of limiting Nusselt numbers from Javeri (1978) for Bi" =1, where
Bi" =ahlk.
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Figure 1: Convergence of local Nusselt number for a square duct (o =1)and Bi =2.

Table 1: Comparison of limiting Nusselt numbers from different sources and for various
aspect ratios, for Bi = .

Aspect Shah&London, Aparecido Miles&Shih, in Clark & Kays, Javeri, 1978 Present
Ratio 1978* &Cotta, 1990 Shah&London, 1953 solution
o 1978
1 2.979 2.978 2.976 2.89 2.981 2.978
1/2 3.389 3.392 3.391 3.39 3.393 3.392
1/4 4.435 4.440 4.439 - 4.475 4.439
1/8 5.596 5.607 5.597 - 5.684 5.599

* Nu(oo) =7.541(1-2.610a" +4.970a” =5.119a” +2.702a™ - 0.548a")

Table 2: Comparison of limiting Nusselt numbers from Javeri (1978) for various aspect ratios.

Aspect Ratio Javeri, 1978 Present solution
1 3.014 3.018
172 3.141 3.142
1/4 3.845 3.860
1/8 5.131 5.106

* For Bi' =1, where Bi" =ah/k .
Table 3 presents results for thermal entry length and, Table 4 presents local and average

Nusselt number, and dimensionless bulk fluid and average wall temperature for various Biot
numbers, for o =1.

Table 3: Results for thermal entry length (Ly,) for various Biot numbers, for o =

Bi 0 200 20 2 0.2 0.02
L, 0.043 0.044 0.047 0.054 0.056 0.057

Figures 2 correspond to the dimensionless average temperature profiles for rectangular
ducts with different aspect ratios, for Bi =2 . Figures 3(a) and 3(b) show the local and average
Nusselt number, respectively, in the thermal entry region of rectangular ducts with different
aspect ratios, for Bi =2.



Table 4: Results for local, average Nusselt number, and dimensionless average, wall average
temperature for various Biot numbers, for o’ =1.

Bi z Nu(Z) Nu(Z) 8.,(2) By a(2)
0.0001 21.802 30.418 0.989 0.000

0.0005 11.841 17.999 0.965 0.000

0o 0.001 9.298 14.187 0.945 0.000
0.01 4.347 6.475 0.772 0.000

0.1 2.982 3.521 0.245 0.000

1 2.978 3.030 0.000 0.000

0.0001 22.300 33.482 0.989 0.104

0.0005 12.018 18.808 0.968 0.055

200 0.001 9.407 14.660 0.948 0.043
0.01 4.366 6.556 0.778 0.017

0.1 2.982 3.533 0.251 0.004

1 2.977 3.033 0.000 0.000

0.0001 23.033 38.638 0.995 0.535

0.0005 12.700 20.515 0.981 0.381

20 0.001 9.886 15.795 0.967 0.320
0.01 4.488 6.859 0.823 0.151

0.1 2.984 3.590 0.303 0.039

1 2.976 3.038 0.000 0.000

0.0001 23.228 39.033 0.999 0.920

0.0005 12.976 20.820 0.996 0.863

2 0.001 10.156 16.084 0.993 0.830
0.01 4.687 7.092 0.941 0.660

0.1 3.038 3.708 0.601 0.362

1 3.017 3.087 0.008 0.005

0.0001 23.199 39.000 1.000 0.991

0.0005 12.969 20.804 1.000 0.984

0.2 0.001 10.160 16.075 0.999 0.980
0.01 4.735 7.121 0.992 0.952

0.1 3.101 3.771 0.927 0.871

1 3.075 3.146 0.472 0.443

0.0001 23.210 39.029 1.000 0.999

0.0005 12.972 20.813 1.000 0.998

0.02 0.001 10.162 16.081 1.000 0.998
0.01 4.741 7.125 0.999 0.995

0.1 3.113 3.780 0.992 0.986

1 3.086 3.156 0.924 0.918
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Figure 2: Dimensionless average temperature.
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Figure 3: (a) Local and (b) average Nusselt number.

Figure 4(a) presents results for local Nusselt number, and Fig. 4(b) presents results for

dimensionless average temperature and average wall temperature profiles in the thermal entry
region of square ducts for different Biot numbers.
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Figure 4: (a) Local Nusselt number and (b) dimensionless average temperature and average
wall temperature profiles

Figure 5 presents a comparison of local Nusselt number in the thermal entry region of

square ducts, for Bi = . Present solution coincides with Chandrupatla & Sastri (1977) and
diverges from Javeri (1978), for about Z < 2.10°.
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Figure 5: Comparison of local Nusselt number.
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The data obtained are in a good agreement with literature, providing a set of benchmark
results both for reference purposes and calibration of purely numerical schemes devised for
more involved problems. The present approach demonstrated to be relatively cheap, in the
range of N considered, running in a personal computer taking less than a minute for each
run.
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